Elastio Software,  Ransomware,  Cyber Recovery

Introducing Elastio’s Quarantine Workflow for AWS Logically Air-Gapped Vaults

Author

Elastio Product Team

Date Published

The Immutability Blind Spot

AWS Logically Air-Gapped (LAG) Vaults are a massive leap forward for cloud recovery assurance. They provide the isolation and immutability enterprises need to survive catastrophic cyber events.

But immutability has a dangerous blind spot: it doesn’t distinguish between clean data and corrupted data.

If ransomware encrypts your production environment and those changes replicate to your backup snapshots before they are moved to the vault, you are simply locking the malware into your gold-standard recovery archive. You aren’t preserving your business; you’re preserving the attack.

Today, Elastio has closed that gap. We introduced a new integration with AWS LAG that ensures only provably clean recovery points enter your immutable vault. By combining our deep-file inspection with a new Automated Quarantine Workflow, we prevent infected data from polluting your recovery environment.

The Risk: "Immutable Garbage In, Immutable Garbage Out"

The core principle of modern resilience is simple: Immutable storage isn't enough—data integrity must be proven.

Ransomware attackers are evolving. They no longer just encrypt production data; they target backup catalogs and leverage "slow burn" encryption strategies to corrupt snapshots over weeks or months. Standard signature-based detection tools often miss these storage-layer attacks because they are looking for executable files, not the mathematical signs of entropy and corruption within the data blocks themselves.

If you copy an infected recovery point into an AWS LAG Vault and lock it with a compliance retention policy, you create a restoration loop: every time you attempt to recover, you re-infect the environment.

The Elastio Solution: Verify, Then Vault

Elastio has updated its recovery assurance platform to act as that gatekeeper. We utilize machine learning-powered ransomware encryption detection models designed specifically to catch advanced strains, including slow encryption, striped encryption, and obfuscated patterns.

Here is the new workflow for AWS LAG customers:

  1. Ingest & Inspection: As workload backups or snapshots are generated, Elastio automatically inspects the data for signs of ransomware encryption and corruption.
  2. The Decision Engine: Based on the inspection results, the workflow forks immediately:
    • Path A: The Clean Path. If the data is verified as clean, it is routed to the customer’s Immutable LAG Vault. Once there, it undergoes automated recovery testing on a set schedule to prove recoverability.
    • Path B: The Infection Path. If data is flagged as infected, it is blocked from entering the clean LAG vault. Instead, the compromised snapshot is automatically routed to a Quarantine Vault, which can itself be configured as a separate Logically Air-Gapped Vault.

Optionally, Elastio can trigger the deletion of the local copy immediately after the move to either the clean or quarantine vault is complete, eliminating the need to maintain local retention.

This "fork-in-the-road" architecture ensures your primary vault remains pristine for recovery, while compromised snapshots are securely isolated for forensic analysis.

Why This Matters for the Enterprise

For CISOs, Cloud Architects, and Governance teams, this workflow shifts the posture from "hopeful" to "provable."

  • Audit-Ready Compliance: Whether you are dealing with NYDFS, HIPAA, or cyber insurance requirements, you can now prove that your immutable archives are free of compromise.
  • Reduced Incident Response Time: By automatically segregating infected data, IR teams don't have to waste time shifting through thousands of snapshots to find a clean version. Elastio points you directly to the last clean copy and the first infected copy.
  • Cost Control: You stop paying for premium, immutable storage on data that is useless for recovery.

Real-World Value

Elastio delivers outcome-driven security. With this update, we provide:

  • Provable Recovery: You don’t just think your backups will work; you have a verified, clean report to prove it.
  • Ransomware Impact Detection: Identify the exact moment of infection to minimize data loss (RPO).
  • Integrity Assurance: Validate that no tampering has occurred within the data before it becomes immutable.

Take Control of Your Recovery

Don't let your backup vault become a ransomware repository. Ensure that every recovery point stored in AWS LAG is verified, validated, and clean.

NOTE: Augmenting AWS Direct-to-LAG with Integrity Validation

While the new AWS Backup Direct to Logically Air-Gapped Vault capability simplifies compliance for frameworks like DORA and NIST, it is important to note that this feature currently supports only Amazon S3 and Amazon EFS. Furthermore, the native workflow focuses solely on transport efficiency and access control; it does not inspect the payload itself.

To ensure data validity, best practice dictates using Elastio to scan S3 and EFS directly, leveraging its built-in support for integrity validation. This data integrity scan should be scheduled to occur before the Direct-to-LAG backup is initiated.

3 Key Takeaways

  1. Immutability != Integrity Locking unverified data creates a "restoration loop" where ransomware is preserved alongside your critical assets.
  2. The "Verify-Then-Vault" Gatekeeper Elastio sits upstream of your AWS LAG Vault, inspecting every recovery point. Only verified clean data is allowed to enter your gold-standard archive, ensuring it remains uncompromised.
  3. Automated Quarantine Infected snapshots are instantly routed to a secure Quarantine Vault for forensic analysis, isolating threats without contaminating your clean recovery environment or slowing down response teams.

Recover With Certainty

See how Elastio validates every backup across clouds and platforms to recover faster, cut downtime by 90%, and achieve 25x ROI.

Related Articles
<img src="featured-image.jpg" alt="Cloud-native architecture ransomware risk and data integrity" />
Elastio Software,  Ransomware
February 7, 2026

Cloud-Native Architectures Shift Ransomware Risk to Data Integrity While cloud platforms improve availability and durability through replication, immutability, and automated recovery, they do not ensure data integrity. In cloud-native environments, compute is ephemeral and identity-driven, but persistent storage is long-lived and highly automated. This shifts ransomware risk away from servers and toward data itself. Modern ransomware increasingly exploits compromised cloud credentials and native APIs to encrypt or corrupt data gradually, often without triggering traditional malware detection. As a result, immutable backups and replicas can faithfully preserve corrupted data, leaving organizations unable to confidently restore clean systems. Ransomware resilience in cloud-native architectures therefore requires data integrity validation: continuous verification that backups, snapshots, and storage objects are clean, recoverable, and provably safe to restore. Without integrity assurance, recovery decisions depend on manual forensics, increasing downtime, operational risk, and regulatory exposure. Executive Strategic Assessment We have successfully re-architected our enterprise for the cloud, adopting a model where compute is ephemeral and infrastructure is code. In this environment, we no longer repair compromised servers; we terminate them. This success has created a dangerous blind spot. By making compute disposable, we have migrated our risk entirely to the persistent storage layer (S3, EBS, FSx, RDS). Our current architectural controls—S3 Versioning, Cross-Region Replication, and Backup Vault Locks—are designed for Durability and Availability. They guarantee that data exists and cannot be deleted. They do not guarantee that the data is clean. In cloud-native security, data integrity means the ability to cryptographically and behaviorally verify that stored data has not been silently encrypted, corrupted, or altered before it is used for recovery. In a modern ransomware attack, the threat is rarely that you "lose" your backups; it is that your automated, immutable systems perfectly preserve the corrupted state. If we replicate an encrypted database to a compliance-mode vault, we have not preserved the business—we have simply "vaulted the virus."Under the shared responsibility model, cloud providers protect the availability of the platform, while customers retain responsibility for ensuring the correctness and integrity of the data they store and recover. This brief analyzes the Integrity Gap in cloud-native resilience. It details the architectural controls required to transition from assuming a clean recovery to algorithmically proving it, ensuring that when the Board asks, The New Risk Reality: Ephemeral Compute, Permanent Risk Our migration to cloud-native architectures on AWS has fundamentally shifted our risk profile. We have moved from "repairing servers" to "replacing them." Compute is now disposable (containers, serverless functions, auto-scaling groups) and identity is dynamic (short-lived IAM credentials). This is a security win for the compute layer because the "crime scene" effectively evaporates during an incident. Cloud changes where risk concentrates, not whether risk exists. Recent incident analysis shows stolen credentials as a leading initial access vector, with median attacker dwell time measured in days rather than months. This compression of time is what enables low-and-slow data corruption to outrun human-driven validation. Multiple industry investigations support this pattern, including Mandiant and Verizon DBIR reporting that credential abuse and identity compromise are now among the most common initial access vectors in cloud environments, with attackers often persisting long enough to corrupt data before detection. However, this architecture forces a massive migration of risk into the persistent storage layer. Modern ransomware attacks exploit this shift by targeting the integrity of the state itself. Attackers encrypt object stores, poison transaction logs, or utilize automation roles to mass-modify snapshots.Why aren’t cloud-native architectures inherently ransomware-safe? Because cloud controls prioritize availability and automation, not verification of data correctness at restore time. The Strategic Blind Spot: Immutability is Not Integrity Our current resilience strategy aligns with AWS Well-Architected frameworks. We rely heavily on Availability and Durability. We use S3 Versioning, AWS Backup Vault Locks, and Cross-Region Replication. These controls are excellent at ensuring data exists and cannot be deleted. However, they fail to ensure the data is clean. Integrity controls verify recoverability and correctness of restoration assets, not just retention. Operationally, this means validating data for encryption or corruption, proving restore usability, and recording a deterministic “last known clean” recovery point so restoration decisions do not depend on manual forensics. In a "Low and Slow" corruption attack, a threat actor uses valid, compromised credentials to overwrite data or generate new encrypted versions over weeks. In cloud environments, attackers increasingly encrypt or replace data using native storage APIs rather than custom malware. Once access is obtained, legitimate encryption and snapshot mechanisms can be abused to corrupt data while appearing operationally normal.This creates a failure mode unique to cloud-native architectures: attacks can succeed without malware, without infrastructure compromise, and without violating immutability controls. The "Immutable Poison" Problem: If an attacker encrypts a production database, Backups will dutifully snapshot that corruption. If Vault Lock is enabled, we effectively seal the corrupted state in a compliance-mode vault. We have preserved the attack rather than the business. Vault Locking prevents deletion and lifecycle modification of recovery points, including by privileged users. It does not validate the integrity or cleanliness of the data being ingested and retained.Replication Accelerates Blast Radius: Because replication is designed for speed (RPO), it immediately propagates the corrupted state to the DR region. The Missing Control: Recovery Assurance During a ransomware event, the most expensive resource is decision time. The Board will not ask "Do we have backups?" They will ask "Which recovery point is the last known good state?" Without a dedicated integrity control, answering this requires manual forensics. Teams must mount snapshots one by one, scan logs, and attempt trial-and-error restores. This process turns a 4-hour RTO into a multi-day forensic ordeal. Industry data shows that organizations take months to fully identify and contain breaches, and multi-environment incidents extend that timeline further. This gap is why recovery cannot depend on snapshot-by-snapshot investigation during an active crisis. Critically, integrity validation produces durable evidence, timestamps, scan results, and clean-point attestations that can be reviewed by executives, auditors, and regulators as part of post-incident assurance. Where Elastio Fits: The Integrity Assurance Layer Elastio fits into our architecture not as a backup tool, but as an Integrity Assurance Control (NIST CSF "Recover") that audits the quality of our persistence layer. Detection in Depth: Unlike EDR which monitors processes, Elastio watches the entropy and structure of the data itself. It scans S3 buckets and EBS snapshots for the mathematical signatures of encryption and corruption.Provable Recovery: Elastio indexes recovery points to algorithmically identify the "Last Known Clean" timestamp. This allows us to automate the selection of a clean restore point and decouple recovery time from forensic complexity. Platform Engineering Guide Architecture Context Elastio operates as an agentless sidecar. It utilizes scale-out worker fleets to mount and inspect storage via standard Cloud APIs (EBS Direct APIs, S3 GetObject, Azure APIs). It does not require modifying production workloads or installing agents on production nodes. Protection Capabilities by Asset Class 1. AWS S3 & Azure Blob Data Lakes Real-Time Inspection: The system scans objects in real-time as they are created. This ensures immediate detection of "infection by addition."Threat Hunting: If threats are found, automated threat hunts are performed on the existing objects/versions to identify the extent of the compromise.Recovery: The system identifies the last known clean version, allowing restores to be automated and precise. 2. Block Storage (EBS, EC2, Azure Disks, Azure VMs) Scale-Out Scanning: Automated scans of persistent storage are performed using ephemeral, scale-out clusters. This ensures that inspection does not impact the performance of the production workload.Policy Control: For long-lived workloads (e.g., self-hosted databases), policies control how frequently to scan (e.g., daily, hourly, or on snapshot creation) to balance assurance with cost. Integrity validation frequency must be faster than plausible time-to-impact. With ransomware dwell time measured in days, weekly validation leaves material integrity gaps. For critical, high-risk workloads, production data validation can be configured to run as frequently as hourly, based on policy and business criticality, while lower-risk assets can operate at longer intervals to balance assurance, cost, and operational impact. 3. AWS Backup Scan-on-Create: Automated scanning of backups occurs immediately as they are created.Asset Support: Supports EC2, EBS, AMI, EFS, FSx, and S3 backup types.Vault Integration: Fully integrated with AWS Backup Restore Testing and Logically Air-Gapped (LAG) Vaults, ensuring that data moving into high-security vaults is verified clean before locking. 4. Azure Backup Scan-on-Create: Automated scanning of backups occurs immediately as they are created.Asset Support: Supports Azure VM, Azure Managed Disks, and Azure Blobs. 5. Managed Databases (RDS / Azure Managed SQL) Status: Not Supported.Note: Direct integrity scanning inside managed database PaaS services is not currently supported. Table 1: Threat Manifestation & Control Fit Architecture ComponentThe "Native" Failure ModeProtection Available (Elastio)AWS S3 / Azure Blob"Infection by Addition"Ransomware writes new encrypted versions of objects. The bucket grows, and "current" versions are unusable.Real-Time Detection & HuntingScans real-time as objects are created. Automates threat hunts for last known clean versions. Automates restores.EC2 / Azure VMs(Self-Hosted DBs)The "Live Database" AttackAttackers encrypt database files (.mdf, .dbf) while the OS remains up. Standard snapshots capture the encrypted state.Automated Integrity ScansAutomated scans of persistent storage in scale-out clusters. Policies control scan frequency for long-lived workloads.AWS BackupVault PoisoningWe lock a backup that was already compromised (Time-to-detect > Backup Frequency).Scan-on-Create (Vault Gate)Automated scanning of backups (EC2, EBS, AMI, EFS, FSx, S3) as they are created. Integrated with AWS Restore Test and LAG Vaults.Azure BackupReplica CorruptionBackup vaults replicate corrupted recovery points to paired regions.Scan-on-CreateAutomated scanning of Azure VM, Managed Disk, and Blob backups as they are created.Managed DBs(RDS / Azure Managed SQL)Logical CorruptionValid SQL commands drop tables or scramble columns.Not SupportedIn these environments, integrity assurance must be addressed through complementary controls such as transaction log analysis, application-layer validation, and point-in-time recovery testing. Conclusion Adopting this control moves us from a posture of "We assume our immutable backups are valid" to "We have algorithmic proof of which recovery points are clean." In an era of compromised identities, this verification is the requisite check-and-balance for cloud storage. This control removes uncertainty from recovery decisions when time, trust, and data integrity matter most.In cloud-native environments, ransomware resilience is no longer defined by whether data exists, but by whether its integrity can be continuously proven before recovery.In practical terms, any cloud-native ransomware recovery strategy that cannot deterministically identify a last known clean recovery point before restoration should be considered operationally incomplete. This perspective reflects patterns we consistently see in enterprise incident response, including insights shared by Elastio advisors with deep experience leading ransomware investigations and cloud recovery efforts.

Elastio Software,  Ransomware
February 1, 2026

Elastio and AWS recently hosted a joint webinar, “Modern Ransomware Targets Recovery: Here’s What You Can Do to Stay Safe.” The session brought together experts to unpack how ransomware tactics are evolving and what organizations need to do differently to stay resilient. A clear theme emerged. Attackers are no longer focused on disruption alone. They are deliberately sabotaging recovery. Ransomware Has Shifted From Disruption to Recovery Sabotage Modern ransomware no longer relies on fast, obvious encryption of production systems. Instead, attackers often gain access months in advance. They quietly study the environment, including backup architectures, replication paths, and retention windows. Encryption happens slowly and deliberately, staying below detection thresholds while corrupted data propagates into snapshots, replicas, and backups. By the time the attack is triggered and ransom is demanded, recovery options are already compromised. This represents a fundamental shift in risk. Backups are no longer just a safety net. They are a primary target. Ransomware Risk Is Unquantifiable Without Proven Clean Recovery Points Ransomware risk becomes impossible to quantify when organizations cannot prove their recovery data is clean. Boards, regulators, and insurers are no longer reassured by the mere existence of backups. They want to know how quickly recovery can happen, which recovery point will be used, and how its integrity is verified. Most organizations cannot answer these questions with confidence because backup validation is not continuous. The consequences are real. Extended downtime, board-level exposure, insurance gaps, and growing regulatory pressure under frameworks such as DORA, NYDFS, and PRA. Without proven clean recovery points, ransomware becomes an unbounded business risk rather than a technical one. The Three Pillars of Ransomware Recovery Assurance The webinar emphasized that real ransomware resilience depends on three pillars working together. Immutability and isolation ensure backups are tamper-proof and stored separately, protected by independent encryption keys. AWS capabilities such as logically air-gapped vaults support this foundation.Availability focuses on whether recovery can happen fast enough to meet business expectations, particularly when identity systems are compromised. Clean-account restores and multi-party approval become critical.Integrity, the most overlooked pillar, ensures backups are continuously validated to detect encryption, corruption, malware, and fileless attacks, and to clearly identify the last known clean recovery point. If any pillar fails, recovery fails. For more information: Resilience by design: Building an effective ransomware recovery strategy | AWS Storage Blog Malware Scanning Is Not Ransomware Detection The speakers drew a clear distinction between traditional malware scanning and what is required to defend against modern ransomware. Signature-based tools look for known binaries, but today’s attacks often run in memory, use polymorphic techniques, and encrypt data without leaving a detectable payload. In these cases, the absence of malware does not mean the absence of damage. Effective ransomware defense requires detecting the impact on data itself, including encryption, corruption, and abnormal change patterns, not just the presence of malicious code. Validation Enables Faster, Safer Recovery Without Paying Ransom A real-world case study illustrated the value of recovery validation. Attackers encrypted data gradually over several days, allowing compromised data to flow into backups that appeared intact but were unsafe to restore. Through targeted threat hunting, Elastio identified a clean recovery point from roughly six days earlier, enabling the company to restore operations without paying the ransom. With downtime costs often reaching millions per day, even small reductions in recovery time have outsized financial impact. The takeaway was simple. Knowing where to recover from matters more than recovering quickly from the wrong place. Key Takeaways Ransomware now targets recovery, not just production.Attackers gain access early, encrypt data slowly, and ensure corruption spreads into replicas and backups before triggering an attack. By the time ransom is demanded, recovery paths are often already compromised.Backups alone are not proof of recoverability.Without continuous validation, organizations cannot confidently identify a clean recovery point, making ransomware risk impossible to quantify.True ransomware resilience depends on three pillars.Immutability and isolation protect backups from tampering, availability ensures recovery meets business expectations, and integrity validation confirms recovery data is usable. If integrity fails, recovery fails.Malware detection is not ransomware detection.Fileless and polymorphic attacks often evade signature-based tools. Detecting the impact on data, such as encryption and corruption, is critical.Provable recovery changes the economics of ransomware.Validated recovery points reduce downtime, avoid reinfection, and can eliminate the need to pay ransom, delivering measurable operational and financial impact. Additional Resources AWS ReInvent: How Motability Operations built a ransomware-ready backup strategy with AWS Backup & Elastio AWS re:Invent 2025 - Motability Operations' unified backup strategy: From fragmented to fortified

Elastio Software
January 22, 2026

In early 2026, U.S. authorities issued a cyber threat alert warning organizations about evolving tactics used by North Korean state-sponsored cyber actors. The advisory highlights how the Democratic People’s Republic of Korea (DPRK) continues to refine its cyber operations to conduct espionage, gain persistent access to networks, and generate revenue to support state objectives. This activity underscores a broader reality: DPRK cyber operations are no longer niche or experimental. They are mature, adaptive, and increasingly effective against both public- and private-sector targets. Evolving Tradecraft: From Phishing to QR Code Attacks A key focus of the alert is the growing use of malicious QR codes embedded in phishing emails, a technique often referred to as “quishing.” Instead of directing victims to malicious links, attackers embed QR codes that prompt users to scan them with mobile devices. This approach allows attackers to bypass traditional email security controls and exploit weaker defenses on mobile platforms. Once scanned, these QR codes redirect victims to attacker-controlled pages that closely mimic legitimate login portals, such as enterprise email or remote access services. Victims who enter their credentials unknowingly hand over access to their accounts, enabling attackers to move laterally, conduct follow-on phishing campaigns, or establish long-term persistence. Kimsuky and Targeted Espionage The activity described in the alert is attributed to a DPRK-linked cyber group commonly referred to as Kimsuky. This group has a long history of targeting policy experts, think tanks, academic institutions, and government entities, particularly those involved in foreign policy and national security issues related to the Korean Peninsula. What distinguishes recent campaigns is the subtlety of the lures and the deliberate exploitation of user trust. Emails are crafted to appear routine or administrative, and QR codes are presented as harmless conveniences. This increases the likelihood of successful compromise, even in security-aware environments. Cybercrime as Statecraft DPRK cyber operations should not be viewed solely through the lens of traditional espionage. North Korea has repeatedly demonstrated its willingness to use cybercrime as a strategic tool. In parallel with intelligence collection, DPRK-linked actors have conducted financially motivated attacks, including cryptocurrency theft, financial fraud, and illicit remote employment schemes. These activities serve a dual purpose: generating revenue to circumvent international sanctions and providing operational cover for broader intelligence objectives. In many cases, what appears to be simple fraud is ultimately tied to state-directed priorities. Why This Matters Now The techniques outlined in the 2026 alert highlight how DPRK cyber actors are adapting faster than many defensive programs. By shifting attacks to mobile devices, exploiting human behavior, and blending espionage with financial crime, they reduce the effectiveness of traditional security controls. For organizations, this means that technical defenses alone are no longer sufficient. User awareness, mobile security posture, identity protection, and anomaly detection all play a critical role in mitigating risk. Key Takeaways for Organizations Organizations should assume that DPRK cyber activity will continue to evolve and expand in scope. Practical steps include updating security awareness training to address QR code–based attacks, monitoring for anomalous authentication behavior, limiting credential reuse, and treating identity compromise as a high-impact security incident. Most importantly, leaders should recognize that DPRK cyber operations are persistent, well-resourced, and strategically motivated. Understanding this threat is essential not only for government and policy organizations, but for any enterprise operating in an increasingly interconnected and geopolitically influenced digital environment.