Elastio Software

Series Introduction: Understanding the Ransomware Protection Stack

Author

Zeen Rachidi

Date Published

Triangular red building with white cloud behind it

In today’s rapidly evolving cybersecurity landscape, businesses face a growing number of threats that require a multi-layered defense strategy. The challenge is navigating the vast array of security solutions available and understanding how they work together to provide comprehensive ransomware protection.

With new security technologies emerging—EDR, XDR, CNAPPs, immutable backups—it can be challenging to determine the best approach for safeguarding critical data. Security leaders often struggle to create a cohesive strategy that balances prevention, detection, and recovery to ensure resilience against modern ransomware attacks.

This blog series is designed to simplify the complexity of ransomware protection by exploring how different security solutions fit together and complement each other in today’s threat landscape.

Rather than replacing existing tools, the Elastio Platform fills a crucial but often overlooked gap—ensuring that organizations can recover quickly and safely from validated clean data when an attack occurs.

Each post in this series will examine how Elastio Platform works with key security technologies, providing end-to-end ransomware protection with continuous recovery assurance.

Elastio Platform & Cloud Native Application Protection Platforms (CNAPPs)

Introduction

CNAPPs and Elastio Platform work together by combining proactive security controls with continuous reliable recovery assurance—while CNAPPs help prevent and detect threats, Elastio ensures that businesses can recover safely and quickly by continuously validating data integrity and pre-scanning backups for ransomware, malicious encryption from insiders, corruption, and other hidden recoverability threats.

What is a CNAPP?

Cloud-Native Application Protection Platforms (CNAPPs) secure cloud applications and workloads by combining several security capabilities:

  • Cloud Security Posture Management (CSPM) – Identifies cloud misconfigurations and compliance gaps.
  • Cloud Workload Protection (CWPP) – Defends against malware, unauthorized access, and runtime threats.
  • Identity & Access Security – Protects identity-based configurations from exploitation.

Leading CNAPP vendors include Wiz, Palo Alto Prisma Cloud, and Lacework.

CNAPPs proactively identify vulnerabilities, misconfigurations, and exposed secrets in code, infrastructure, and cloud workloads. CNAPPs help businesses reduce risk by continuously scanning environments before attackers exploit weaknesses.

Where CNAPPs Stop & the Elastio Platform Begins

CNAPPs strengthen cloud security by identifying risks and preventing breaches, but they don’t ensure recoverability when an attack occurs.

Backup Breakdown: How Data Recovery Impacts the Outcome of Cyber AttacksBackup Breakdown: How Data Recovery Impacts the Outcome of Cyber Attacks”, one major finding reveals that of the 92% who invest in data backup solutions,less than two thirds (63%) successfully restore their data when they experience a ransomware attack, and more than one in four businesses(31%) see their backups fail. – At Bay, the InsurSec provider for the digital age

The Elastio Platform fills this gap by proactively inspecting offline storage and backups for ransomware, unauthorized encryption, corruption, and other recoverability threats, ensuring recovery points remain clean. It also proactively detects post-breach threats, preventing organizations from restoring compromised data and reducing downtime.

Without continuously scanning backups as they are created, businesses risk discovering too late that their backups are infected or unusable. The Elastio Platform removes this uncertainty, ensuring that recovery is always possible, safe, and disruption-free.

Function

CNAPP

Elastio Platform

Risk Reduction & Attack Prevention

Identity & Access Security

Yes

No

Cloud Workload Protection

Yes

No

Cloud Security Posture Management

Yes

Some

Identifies Storage Misconfigurations

Post-Attack Recovery Assurance

Scans storage and backups for ransomware encryption

No

Yes

Scans storage and backups for ransomware payloads

No

Yes

Scans storage and backups for unauthorized encryption by insider threats

No

Yes

Scans storage and backups for unauthorized encryption for file-system corruption

No

Yes

Case Study: When CNAPP Protection Wasn’t Enough – How Elastio Detected Qilin Ransomware in Backup Data

A cloud-native enterprise relied on a leading CNAPP for security monitoring. Despite its strong preventive controls, the organization suffered a ransomware attack that evaded detection.

When security teams identified the attack, their backups were already compromised with Qilin ransomware—a sophisticated strain that encrypts cloud storage and evades traditional defenses.

However, before restoring data, the company ran Elastio Platform’s ransomware inspection on its backup storage. The Elastio Platform detected the Qilin infection hidden deep into their backups, preventing them from restoring recent data without risking reinfection.

Had the organization integrated Elastio Platform’s proactive scanning earlier, the ransomware would have been detected in the backups early, before it could spread further, and they would have been automatically directed to a prevalidated clean recovery point.

This case highlights a key takeaway:

Even with a CNAPP, organizations need continuous data integrity validation to ensure their recovery points are clean.

Conclusion: Prevention + Recovery = True Ransomware Resilience

Cloud security isn’t just about stopping attacks—it’s also about ensuring businesses can recover when something inevitably gets through.

CNAPPs offer robust preventive measures but do not provide post-attack recovery assurance.

  • Elastio Platform fills this gap by ensuring recovery is safe, fast, and compromise-free.
  • By proactively and continuously inspecting backups and storage across AWS and VMware, Elastio Platform assures that businesses always have clean, recoverable data points.

For organizations investing in CNAPP solutions, the next question is: Are you confident your recovery points are clean and recoverable if ransomware strikes?

Elastio ensures the answer is always YES.

Recover With Certainty

See how Elastio validates every backup across clouds and platforms to recover faster, cut downtime by 90%, and achieve 25x ROI.

Related Articles
Elastio Software
December 24, 2025

Detonation Point is where cyber risk stops being an abstract headline and becomes an operational reality. In a recent episode presented by Elastio, host Matt O’Neill sat down with cloud security expert Costas Kourmpoglou at Spike Reply UK to unpack a hard truth many organizations only learn after an incident: Ransomware doesn’t succeed because attackers are smarter; it succeeds because recovery fails. Ransomware Is an Industry Early ransomware operations were vertically integrated. The same group wrote the malware, gained access, deployed it, negotiated payment, and laundered funds. That model is gone. Today’s ransomware ecosystem resembles a supply chain: Developers build ransomware toolingInitial access brokers sell credentialsAffiliates deploy attacksNegotiators manage extortionSeparate actors handle payments and laundering This “Ransomware-as-a-Service” model lowers the barrier to entry and scales attacks globally. No one really needs expert technical skills. They just need access and opportunity. How Daily Mistakes Set Ransomware in Motion Ransomware became dominant for a straightforward reason: it pays. Despite headlines about zero-day exploits, most ransomware campaigns still begin with mundane failures: Reused credentialsPhishing emailsThird-party access The uncomfortable reality is that most organizations already assume breaches, yet design security as if prevention is enough. In this Detonation Point podcast, Costas noted, “Many teams over-invest in stopping the first mistake and under-invest in what happens after that mistake inevitably occurs.” Attackers don’t rush. Once inside, they: Observe quietly and use native tools to blend in (“living off the land”)Map systems and privilegesIdentify backups and recovery paths Ransomware often detonates months after initial access and long after backups have quietly captured infected data. But Why Paying the Ransom Rarely Works Ransomware payments are often justified as the “cheapest option.” But data tells a different story: Recovery success after payment is worse than a coin flipPayments may violate sanctions lawsData is often not fully restored or released anyway As Costas put it, “If you’re willing to gamble on paying the ransom, you might as well invest that money in resilience, where the odds are actually in your favor.” One of the most critical insights from the conversation was this: If your business cannot operate, that is not just a cybersecurity failure, it’s a business failure. If your plan assumes everything else still works, it’s not a plan. And, if ransomware detonated tonight, do you know which recovery path would save you, and which ones would make things worse? Because when ransomware stops being theoretical, only validated recovery determines the outcome. This blog is adapted from the Detonation Point podcast presented by Elastio.

Elastio × AWS GuardDuty — Automated Scans for Malware
Elastio Software,  Ransomware
December 22, 2025

GuardDuty’s release of malware scanning on AWS Backup is an important enhancement to the AWS ecosystem, reflecting growing industry recognition that inspecting backup data has become a core pillar of cyber resilience. But real-world incidents show that ransomware often leaves no malware behind, making broader detection capabilities for encryption and zero-day attacks increasingly essential. Across industries, there are countless examples of enterprises with premium security stacks in place - EDR/XDR, antivirus scanners, IAM controls - still suffering extended downtime after an attack because teams couldn’t reliably identify an uncompromised recovery point when it mattered most. That’s because ransomware increasingly employs fileless techniques, polymorphic behavior, living-off-the-land tactics, and slow, stealthy encryption. These campaigns often reach backup andreplicated copies unnoticed, putting recovery at risk at the very moment organizations dependon it. As Gartner puts it: Modern ransomware tactics bypass traditional malware scanners, meaning backups may appear ‘clean’ during scans but prove unusable when restored. Equip your recovery environment with advanced capabilities that analyze backup data using content-level analytics and data integrity validation.”— Gartner, Enhance Ransomware Cyber Resilience With A Secure Recovery Environment, 2025 This is the visibility gap Elastio was designed to close. In this post, we walk through how Elastio’s data integrity validation works alongside AWS GuardDuty to support security and infrastructure teams through threat detection all the way to recovery confidence and why integrity validation has become essential in the age of identity-based and fileless attacks. What is AWS GuardDuty? AWS GuardDuty is a managed threat detection service that continuously monitors AWS environments for malicious or suspicious activity. It analyzes signals across AWS services, including CloudTrail, VPC Flow Logs, DNS logs, and malware protection scans, and produces structured security findings. GuardDuty integrates natively with Amazon EventBridge, which means every finding can be consumed programmatically and routed to downstream systems for automated response. For this integration, we focus on GuardDuty malware findings, including: Malicious file findings in S3Malware detections in EC2 environments These findings are high-confidence triggers that indicate potential compromise and warrant immediate validation of recovery data. Learn more about GuardDuty. Why a GuardDuty Finding Should Trigger Recovery Validation Malware detection is important, but it is no longer sufficient to validate data recoverability. Identity-based attacks dominate cloud breaches Today’s attackers increasingly rely on stolen credentials rather than exploits. With valid identities, they can: Use legitimate AWS APIsAccess data without dropping malwareBlend into normal operational behavior In these scenarios, there may be nothing malicious to scan, yet encryption or tampering can still occur. Fileless and polymorphic ransomware evade signatures Many ransomware families: Run entirely in memoryContinuously mutate their payloadsAvoid writing recognizable artifacts to disk Signature-based scanners may report “clean,” even as encryption spreads. Zero-day ransomware has no signatures By definition, zero-day ransomware cannot be detected by known signatures until after it has already caused damage - often widespread damage. The result is a dangerous failure mode: backups that scan clean but restore encrypted or corrupted data. Why Integrity Validation Changes the Outcome Elastio approaches ransomware from the impact side. Instead of asking only “is malware present?”, Elastio validates: Whether encryption has occurredWhat data was impactedWhen encryption startedWhich recovery points are still safe to restore The timeline above reflects a common real-world pattern: Initial access occurs quietlyEncryption begins days or weeks laterBackups continue, unknowingly capturing encrypted dataThe attack is only discovered at ransom time Without integrity validation, teams cannot know with confidence that their backups will work when they need them. This intelligence transforms a GuardDuty finding from an alert into an actionable recovery decision. Using GuardDuty as the Trigger for Recovery Validation Elastio’s new GuardDuty integration automatically initiates data integrity scans when GuardDuty detects suspicious or malicious activity. Instead of stopping at alerts, the integration immediately answers the implied next question: Did this incident affect our data, and can we recover safely? By validating backups and recovery assets in response to GuardDuty findings, Elastio reduces response time, limits attacker leverage, and enables faster, more confident recovery decisions. Architecture Overview At a high level: GuardDuty generates a malware findingThe finding is delivered to EventBridgeEventBridge routes the event into a trusted sender EventBusElastio’s receiver EventBus accepts events only from that senderElastio processes the finding and starts a targeted scanTeams receive recovery-grade intelligenceIncluding:Ransomware detection resultsFile- and asset-level impactLast known clean recovery pointOptional forwarding to SIEM or Security Hub The critical design constraint: trusted senders Each Elastio customer has a dedicated Receiver EventBus. For security reasons, that receiver only accepts events from a single allowlisted Sender EventBus ARN. This design ensures: Strong tenant isolationNo event spoofingClear security boundaries To support scale, customers can route many GuardDuty sources (multiple accounts, regions, or security setups) into that single sender bus. Elastio enforces trust at the receiver boundary. End-to-End Flow Step 1: GuardDuty detects malware GuardDuty identifies a malicious file or suspicious activity in S3 or EC2 and emits a finding. Step 2: EventBridge routes the finding Native EventBridge integration allows customers to filter and forward only relevant findings. Step 3: Sender EventBus enforces trust All GuardDuty findings flow through the designated sender EventBus, which represents the customer’s trusted identity. Step 4: Elastio receives and buffers events The Elastio Receiver EventBus routes events into an internal queue for resilience and burst handling. Step 5: Elastio validates recovery data Elastio maps the finding to impacted assets and initiates scans that analyze both malware indicators and ransomware encryption signals. Step 6: Recovery-grade results Teams receive actionable results: Ransomware detectionFile-level impactLast known clean recovery pointOptional forwarding to SIEM or Security Hub What This Enables for Security and Recovery Teams By combining GuardDuty and Elastio, organizations gain: Faster response triggered by high-signal findingsEarly detection of ransomware encryption inside backupsReduced downtime and data lossConfidence that restores will actually workAudit-ready evidence for regulators, insurers, and leadership Supported Today S3 malware findingsEC2 malware findings EBS-specific handling is in progress and will be added as it becomes available. Why This Matters in Practice In most ransomware incidents, the challenge isn’t identifying a security signal - it’s understanding whether that signal corresponds to meaningful data impact, and what it implies for recovery. Security and infrastructure teams often find themselves piecing together information across multiple tools to assess whether encryption or corruption has reached backups or replicated data. That assessment takes time, and during that window, recovery decisions are delayed or made conservatively. By using GuardDuty findings as a trigger for integrity validation, customers introduce earlier visibility into potential data impact. When suspicious activity is detected, Elastio provides additional context around whether recovery assets show signs of encryption or corruption, and which recovery points appear viable. This doesn’t replace incident response processes or recovery testing, but it helps teams make better-informed decisions sooner, particularly in environments where fileless techniques and identity-based attacks limit the effectiveness of traditional malware scanning. Extending GuardDuty From Detection Toward Recovery Readiness GuardDuty plays a critical role in surfacing high-confidence security findings. Elastio extends that signal into the recovery domain by validating the integrity of data organizations may ultimately depend on to restore operations. Together, they help teams bridge the gap between knowing an incident may have occurred and assessing recovery readiness, with supporting evidence that can be shared across security, infrastructure, and leadership teams. For organizations already using GuardDuty, this integration provides a practical way to connect detection workflows with recovery validation without changing existing security controls or response ownership. Watch our discussion: Understanding Elastio & AWS GuardDuty Malware Scanning for AWS Backup An open conversation designed to answer customer questions directly and help teams understand how these technologies work together to strengthen recovery posture. How signature-based malware detection compares to data integrity validationReal-world scenarios where behavioral and encryption-based detection mattersHow Elastio extends visibility, detection, and recovery assurance across AWS, Azure, and on-prem environmentsAn early look at Elastio’s new integration launching at AWS re:Invent

Unmasking
Elastio Software,  Ransomware
December 5, 2025

Hunting and Defeating EDR-Evading Threats and Machine-Identity Attacks As enterprises accelerate cloud transformation, containerization, AI adoption, microservices, and automation, a subtle yet profound shift is reshaping the cyber threat landscape. Traditional endpoint-based detection approaches are no longer sufficient. Attackers are increasingly evading EDR, while simultaneously exploiting a rapidly expanding universe of machine identities such as service accounts, certificates, API keys, and ephemeral workload tokens. This creates a new, invisible attack surface that is often unmonitored, ungoverned, and misunderstood. To defend effectively, organizations must evolve. The new model brings together endpoint awareness, identity intelligence, and data-layer resilience to expose threats that would otherwise remain invisible. The EDR Blind Spot Is Widening Endpoint Detection and Response has been the backbone of enterprise defense. But adversaries have learned to systematically bypass it through techniques that interfere with telemetry, suppress alerts, operate from memory, or shift their activity into systems or layers where EDR agents cannot run. Some threat groups have deployed tooling that disables endpoint monitoring components entirely, allowing operations to continue with little or no visibility for defenders. At the same time, many critical infrastructure components do not support EDR at all. Hypervisors, storage appliances, virtual machine management systems, and specialized cloud services often sit outside traditional endpoint protections. Attackers increasingly target these layers because activity there blends in with normal operations and rarely triggers alarms. As a result, relying solely on endpoint-centric detection creates blind spots that grow wider as modern infrastructure becomes more distributed. The Explosion of Machine Identities and the Risks They Introduce While EDR evasion grows more sophisticated, another trend has emerged in parallel: the exponential rise of machine identities. These are non-human actors created by automation pipelines, containers, microservices, serverless functions, AI agents, DevOps tooling, and cloud services. Machine identities now outnumber human identities in most cloud-forward enterprises by enormous margins. They often carry privileged permissions, access sensitive data paths, or control critical infrastructure functions. Unlike human accounts, these identities rarely follow standardized onboarding, governance, audit, or lifecycle processes. Many are short-lived, created and destroyed automatically, leaving gaps in visibility. Others live far longer than intended because no one realizes they still exist. Attackers increasingly target these identities because compromising one can grant immediate and legitimate access to high-value systems or data. The activity of a hijacked machine identity blends in naturally with expected automation patterns, making detection difficult. In many cases, the identity itself becomes the persistence mechanism. Identity Becomes the New Perimeter These dynamics undermine a core assumption behind many security architectures: that identity governance is equivalent to human access control. In cloud-native enterprises, identity is now as much about workloads as it is about people. When machine identities are not continuously monitored, governed, and validated, they become powerful tools for stealthy lateral movement or data manipulation. This means identity has truly become the perimeter. But it is a perimeter that cannot be secured solely with human-centric tools. The Data Layer Is Where Invisible Threats Finally Become Visible Machine identities interact with data continuously. They create snapshots, move objects across storage tiers, generate logs, trigger analytics pipelines, replicate datasets, and run unattended processes. If one of these identities is compromised, the first signs of malicious activity often appear in the data layer itself. Unauthorized reads, unexpected modifications, corruption of snapshots, tampered metadata, irregular replication events, or the introduction of malicious content are often the earliest and most reliable indicators of attack. By the time endpoint or identity systems raise alerts, the attacker may have already altered data across multiple systems. This is why modern cyber resilience depends on the ability to continuously verify the integrity, security, and recoverability of data itself. A Modern Defense Model Addressing these emerging threats requires a multi-layered approach that blends identity, workload, and data-centric controls. First, all machine identities must be governed with the same rigor as human identities. This means complete inventory, lifecycle management, least-privilege enforcement, short-lived credential use, and continuous monitoring of identity behavior.Second, detection must expand beyond endpoints. Organizations need visibility into identity issuance, API usage, workload behavior, cloud control-plane activity, and infrastructure components that do not support traditional EDR.Third, data integrity must be continuously validated. Snapshots, backups, object data, and replicated datasets must be automatically and regularly inspected. Any unauthorized change or anomaly should be treated as a leading indicator of potential compromise.Fourth, Zero Trust principles must be deeply embedded in the machine and data layers. Verification is no longer only about authenticating a user. It is about verifying the legitimacy of every process, every identity, and every piece of data flowing through the enterprise. Why This Approach Is Strategic Adversaries are adapting quickly. They no longer need to compromise a human identity or bypass every endpoint. They can operate quietly within automation systems, exploit permissions given to machine identities, or target data itself as the first point of manipulation. By addressing machine identity governance and data integrity together, organizations reduce the inherent weaknesses of endpoint-only detection. They gain a defensive architecture that detects threats earlier, responds more effectively, and ensures business continuity even under active attack. The combination of EDR evasion and machine-identity exploitation represents one of the most significant emerging risks to modern enterprises. Attackers are learning to operate invisibly, bypassing traditional controls and embedding themselves in the automation and data layers where detection is weakest. To win in this environment, security teams must shift their mindset. They must unmask the invisible by looking where attackers now hide: in identities, in the control plane, and in the data itself. They must verify continuously, trust nothing implicitly, and safeguard the integrity of the information the business depends on. This is how modern organizations stay resilient. It is how they transform uncertainty into strength. And it is how they defeat adversaries who no longer need to be seen to be dangerous. This is the gap Elastio is built to close. Schedule a review. 3 Key Takeaways EDR alone leaves growing visibility gapsMachine identities are the new attack surfaceData integrity becomes the ultimate detection layer